Ракетные двигатели, их разнообразие, возможности и перспективы

Что такое баллистическая ракета

Много вопросов возникает в отношении отличий баллистических и крылатых ракет. Отвечая на эти вопросы, можно сказать, что отличия сводятся к траектории полета.

Как это часто бывает, особенности кроются в названии. Так и название крылатой ракеты говорит само за себя. Большую часть пути крылатая ракета держится в воздухе за счет крыльев, представляя из себя по сути самолет. Наличие крыльев обеспечивает ей очень высокую маневренность, позволяющую не только менять траекторию движения, отклоняясь от средств ПВО, но даже лететь на высоте нескольких метров от земли, огибая рельеф. Так ракета и вовсе сможет остаться незамеченной для ПВО.

Это не самолет, а крылатая ракета.

Этот тип ракет имеет меньшую, в сравнении с баллистических, скорость, которая обусловлена, в том числе, более высоким лобовым сопротивлением. Тем не менее, они подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые.

Первые развивают скорость, близкую к скорости звука, но не превышают ее. Примером таких ракет может быть знаменитая американская крылатая ракета ”Томагавк”. Сверхзвуковые ракеты могут развивать скорость до 2,5-3 скоростей звука, а гиперзвуковые, над которыми сейчас работает очень много стран, должны набирать 5-6 скоростей звука.

Еще один пример крылатой ракеты.

Баллистические ракеты летают немного иначе. Они имеют баллистическую траекторию и большую часть своего пути находятся в неуправляемом полете. Грубо говоря, это похоже на то, что ракету просто бросили в противника, как камень. Конечно, есть точный расчет и системы наведения, но именно такой относительно простой способ позволяет нести очень большой заряд, размер и вес которого существенно превышают то, что возьмет ”на борт” крылатая ракета.

Первые научные труды и теоретические работы, связанные с баллистическими ракетами, описаны еще в 1896 году К.Э. Циолковским. Он описал такой тип летательных аппаратов и вывел зависимость между многими компонентами ракеты и ее полета. Формула Циолковского до сих пор составляет важную часть математического аппарата, используемого при проектировании ракет.

Во многом именно этому человеку мы обязаны не только военными, но и мирными ракетами. К.Э. Циолковский.

Устройство РД-107/108

Двигатель РД-107/108 состоит из четырех камер сгорания, турбонасосного агрегата, газогенератора, испарителя азота для наддува баков ракеты и комплекта агрегатов автоматики. Для управления полетом ракеты на двигателях имеются рулевые камеры: два на РД-107 и четыре на РД-108.

Несоизмеримые с возможностями существующих металлов температуры горения и продуктов сгорания, большое количество выделяемого тепла требуют охлаждения стенок камеры сгорания и сопла. В РД-107/108 эта инженерная задача решается двухстеночной конструкцией камеры сгорания и сопла и организацией охлаждения стенки со стороны горячего тракта подачей горючего (керосина) в камеру сгорания через межстеночные пространства.

Вторая особенность РД-107/108 − открытая схема сброса генераторного газа. Окислитель и горючее хранятся в отдельных баках и подаются в систему с помощью турбонасосного агрегата (ТНА). Для привода насосов горючего и окислителя используется турбина, в качестве рабочего тела для которой используется парогаз – продукт каталитического разложения пероксида водорода. Выхлопы турбины выбрасываются за срез сопла. 

Тяга

Понятием тяга обозначается «сила» ракетного двигателя. Тяга измеряется в «фунтах тяги» (США, 4,45 ньютона = 1 фунт тяги) и в ньютонах в метрической схеме. Фунт тяги – это количество тяги, которое требуется для удержания одного фунтового объекта (0,454 кг) неподвижным относительно силы тяжести планеты Земля. Ускорение земной гравитации – 9,8 метров в секунд.

Одна из проблем ракет заключается в том, что топливный вес, обычно, в 36 раз больше полезной нагрузки. Потому что, кроме того, что двигателю необходимо поднимать вес, этот же вес и способствует собственному подъему. Получается, чтобы вывести в космос крошечного человека, потребуется ракета огромных размеров и много-много топлива.

Скорость химических ракет – от 8 до 16 тыс. километров в час. Топливо горит около 2 минут и вырабатывает на старте около 3,3 млн фунтов тяги. Три главных двигателя космического шатлла, к примеру, сжигают топливо на протяжении 8 мин и вырабатывают приблизительно 375 фунтов тяжи каждый во время горения.

Дальше мы поговорим о топливных смесях для твердотопливных ракет.

Двигатели ракеты на твердом топливе – это самые первые модификации, созданные человеком. Впервые они были изобретены в Китае сотни лет назад и их успешно применяют по сегодняшний день. О красных бликах ракет поется даже в национальном гимне, который был написан в начале 1800-х годов). Речь идет о небольших боевых ракетах, работающих на твердом топливе. Они применяются для доставки зажигательных устройств или бомб. Как видите, эти ракеты существуют уже довольно давно.

Идея ракеты на твердом топливе достаточно простая. Вам необходимо создать нечто, чтобы могло быстро гореть, но в то же время не взрываться. В таком случае, порох не подходит (он состоит на 75% из нитрата, 10% серы и 15% угля). В двигателе ракеты взрывы не нужны – необходимо, чтобы горело топливо. Можно изменить смесь до 24% угля, 72% нитрата и 4% серы. Вместо пороха у вас получится ракетное топливо. Такая смесь будет быстро гореть, но она не взрывоопасна, если, конечно, ее правильно загрузить. Приведем классическую схему:

Слева – ракета до зажигания. Твердое топливо показано зеленым цветом. Оно выполнено в виде цилиндра с трубой, которая просверлена по центру. При зажигании горюче начинает сгорать вдоль стенки трубы. Постепенно, по мере сгорания, оно выгорает к корпуса, пока полностью не сгорит. В крошечной ракете или в небольшом ракетном двигателе процесс горения может продолжаться около секунды или даже меньше. В большой ракете топливо будет гореть не меньше двух минут.

«Ни у одной страны нет подобных разработок»

По мнению академика Российской академии космонавтики Александра Железнякова, новый двигатель, как и его предшественник РД-171М, будет успешно конкурировать с зарубежными аналогами.   

По его словам, продвижение этого двигателя на международном рынке связано с вопросами геополитики.

«Кроме Китая, вряд ли кто-то заинтересуется, поскольку это зависит от геополитической обстановки», — пояснил он.

Схожую точку зрения выразил и военный эксперт Михаил Тимошенко. 

«Этот двигатель сможет конкурировать с иностранными разработками. США вряд ли будут заинтересованы в его покупке, потому что у них есть двигатель для тяжёлых ракет. Но интерес могут проявить Евросоюз и Китай, если, конечно, они захотят выводить на орбиту что-то тяжёлое», — сказал он RT.

  • Ракета-носитель среднего класса «Союз-5» («Иртыш»)

В свою очередь, Моисеев заявил, что двигатель вряд ли пойдёт на экспорт, поскольку такие аппараты создаются под конкретные ракеты. Пока за рубежом нет ракет, совместимых с РД-171МВ.

«Для его покупки предполагаемый покупатель должен иметь соответствующую ракету. Им заинтересуются тогда, когда кто-то начнёт разрабатывать ракету, под которую он подойдёт, но пока таких ракет не разрабатывают и в планах ни у кого нет», — сказал эксперт. 

Топливо

Основная статья: Твёрдое ракетное топливо

  • Гомогенные топлива. Представляют собой твёрдые растворы (обычно — нитроцеллюлозы) в нелетучем растворителе (обычно в нитроглицерине). Применяются в небольших ракетах.
  • Смесевые топлива. Это смесь твёрдых окислителя и горючего. Наиболее значимы:
    • Дымный порох. Исторически первое ракетное топливо. Состав: селитра, древесный уголь и сера.
    • Смесевые топлива на основе перхлората аммония (окислитель) и полимерного горючего. Наиболее широко применяемое топливо для тяжелых ракет военного и космического назначения.
    • В ракетомоделизме получило широкое распространение самодельное смесевое топливо на основе нитрата калия и органических связующих, доступных в быту (сорбит, сахар и тому подобных).

Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).

Какое топливо используется в ракете

При выборе типа ракетного топлива больше всего всего внимания уделяется особенностям использования ракеты и тому, каким двигателем ее планируется оснастить. Грубо можно сказать, что все типы топлива делятся в основном по форме выпуска, удельной температуре сгорания и КПД. Среди основных типов двигателей выделяется твердотопливные, жидкостные, комбинированные и прямоточные воздушно-реактивные.

В качестве самого простого твердого топлива можно привести в пример порох, которым заправляются фейерверки. При сгорании он выделяет не очень большое количество энергии, но его достаточно для вывода на высоту нескольких десятков метров красочного заряда. В начале статьи я говорил о китайских стрелах XI века. Они являются еще одним примером твердотопливных ракет.

В некотором роде порох тоже можно назвать топливом твердотопливной ракеты.

Для боевых ракет твердое топливо производится по иной технологии. Обычно им является алюминиевый порошок. Главным плюсом таких ракет является легкость их хранения и возможность работы с ними, когда они заправлены. Кроме этого, такое топливо стоит относительно недорого.

Минусом твердотопливных двигателей является слабый потенциал отклонения вектора тяги. Поэтому для управления в таких ракетах часто используются дополнительные небольшие двигатели на жидком углеводородном топливе. Такая гибридная связка позволяет более полно использовать потенциал каждого источника энергии.

Использование именно комбинированных систем хорошо тем, что позволяет уйти от сложной системы заправки ракеты непосредственно перед запуском и необходимости откачки большого количества топлива в случае его отмены.

Отдельно стоит отметить даже не криогенный двигатель (заправляется сжиженными газами при очень низкой температуре) и не атомный, про который много говорят в последнее время, а прямоточный воздушно-реактивный. Такая система работает за счет создания давления воздуха в двигателе при движении ракеты на большой скорости. В самом двигателе производится впрыск топлива в камеру сгорания и смесь поджигается, создавая давление больше, чем на входе. Такие ракеты способны летать со скоростью, которая в несколько раз превышает скорость звука, но для запуска двигателя нужно давление, которое создается на скорости чуть выше одной скорости звука. Именно поэтому для запуска должны быть использованы вспомогательные средства.

Рецепт смеси

Твердое топливо по своему составу очень разнообразно, и делится на несколько типов. Львиную долю занимают смесевые топлива — тонко измельченные и перемешанные неорганические компоненты, соединенные связующими веществами. Одни из них являются окислителями, другие горючими, они реагируют во фронте горения топлива.

Помимо горючего и окислителя в топливо добавляют многие вспомогательные вещества. Чтобы топливо было пластичным, хорошо размешивалось и могло подаваться при снаряжении в корпус двигателя шнековыми машинами, в топливо вводят пластификаторы. Чтобы придать ему твердость, в топливо добавляют эпоксидные отвердители. При длительном вертикальном положении массив топлива не должен оплывать, давать трещины и накапливать внутренние напряжения — ракеты иногда стоят на боевом дежурстве десятки лет.

Если в топливе появятся трещины, то при работе двигателя они станут нерасчетными площадями горения, оплывший свод потеряет расчетную толщину и изменит форму канала, а возникшие в массиве топлива напряжения приведут к дополнительному разгару в этих местах. Эти риски возрастают под действием взлетной перегрузки, в разы усиливающей вес и давление массы топлива. 

Физические свойства топлива регулируются связующими добавками специальных стабилизаторов. Также в топливо добавляют ингибиторы и катализаторы горения, флегматизаторы (они уменьшают чувствительность топлива к трению, что необходимо при изготовлении смеси и снаряжения двигателя), ингибиторы окисления и другие добавки.

Состав топлива ускорителя SLS таков:

  • 69,6 процентов окислителя, перхлората аммония NHClO4,
  • 16 процентов металлического алюминия,
  • 12 процентов полибутадиенакрилонитрила, 
  • 1,96 процента эпоксидного отвердителя,
  • 0,4 процента железа, которое используется в качестве катализатора.

В молекуле перхлората аммония — четыре атома кислорода. Они освобождаются при нагревании и окисляют металлический алюминий и полибутадиенакрилонитрил. Полибутадиенакрилонитрил, или бутадиен-нитрильный каучук (БНК) — это жесткая резина, которая работает и горючим, и связующим. Углерод и водород БНК при сгорании образуют газовое рабочее тело — смесь в основном углекислого газа и водяного пара. Второе горючее, мелкодисперсный алюминий, сгорает без выделения газов, но температура горения алюминия очень высока, около 3300 °С. Это повышает температуру газов, передавая им тепло сгорания металла.

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 – вход воздуха; 2 – компрессор; 3 – камера сгорания; 4 – сопло;  5 – турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Электрический ракетный двигатель

Этот тип имеет самый большой потенциал развития и использования в будущем. Электрические ракетные двигатели подают большие надежды. Так, их удельный импульс может достигать значений 210 км/с. Различают 3 типа двигателей:

  1. Электротермические.
  2. Электростатические (ионный ракетный двигатель, например).
  3. Электромагнитные.

Особенностью (про которую можно сказать, что она является и преимуществом, и недостатком) является то, что при увеличении удельного импульса необходимо меньше горючего, но больше энергии. С этой точки зрения неплохие шансы имеет ионный ракетный двигатель, который работает на газе. На данный момент он применяется на практике для корректировки траектории орбитальных станций и спутников. Ограниченность источников электроэнергии в космическом пространстве, а также проблемы с работоспособностью на высоте свыше 100 километров пока мешают их широкой эксплуатации. Большой потенциал использования имеют плазменные ракетные двигатели, в которых рабочее тело имеет состояние плазмы, но находящиеся пока только в стадии эксперимента.

Понятие

Ракетное топливо — одно или более высокоэнергетических веществ питания ракетного двигателя для создания им тяги. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например, ядерных ракетных двигателей. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое химическое ракетное топливо состоит из двух компонентов: окислителя и горючего, которые находятся в ракете в жидком состоянии в разных баках. Смешивание их происходит в камере сгорания жидкостного ракетного двигателя, обычно с помощью форсунок. Давление компонентов топлива создается за счет работы турбонасосной или вытеснительной системы, в работе которых также могут участвовать компоненты топливной пары. Кроме того, компоненты топлива используются для охлаждения сопла жидкостного ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления с участием катализаторов, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в виде смеси твёрдых веществ.

Химический ракетный двигатель

В их основе находится химическая реакция, в которую вступают горючее и окислитель. Во время реакции продукты сгорания нагреваются до значительных температур, при этом они расширяются и разгоняются в соплах, чтобы затем покинуть двигатель. Тепло, выделяемое таким двигателем, используется на расширение рабочего тела, имеющего газообразный вид. Существует два типа механизмов такого типа.

Твердотопливные двигатели имеют простую конструкцию, они дешевы в изготовлении и не требуют значительных затрат на хранение и подготовку к эксплуатации. Это обуславливает их надёжность и желанность в использовании. Но одновременно такой тип имеет существенный недостаток – очень высокий расход топлива. Также оно состоит здесь из смеси горючего и окислителя. Более эффективным, но одновременно и сложным является жидкостный ракетный двигатель. В нём горючее и окислитель находятся в разных резервуарах и дозированно подаются в сопло. Важным преимуществом является то, что можно регулировать уровень подачи и, соответственно, скорость космического корабля. Несмотря на то что такие ракетные двигатели обладают невысоким удельным импульсом, они развивают сильную тягу. Такое их свойство привело к тому, что сейчас на практике используются исключительно они.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Где используются ионные двигатели

Вам могло показаться, что ионные двигатели существуют только на бумаге и в лабораториях, но это не так. Они уже использовались, как минимум, в семи завершившихся миссиях и используются минимум в четырех действующих.

В том числе такие двигатели используются в рамках миссии BepiColombo, запущенной 20 октября 2018 года. В этой меркурианской миссии используются 4 ионных двигателя суммарной мощностью 290 миллиньютонов. Кроме этого, аппарат оснащен и химическим двигателем. Оба они в сочетании с гравитационными маневрами должны обеспечить выход корабля на орбиту Меркурия в качестве искусственного спутника.

Космический аппарат BepiColombo.

Использованием этих двигателей не брезгует и Илон Маск в своей программе Starlink, за счет этих двигателей корабль должен совершать небольшие маневры и уклоняться от космического мусора.

Сейчас планируется доставка на МКС ионной тяговой установки, которая позволит управлять положением станции в автоматическом режиме. Ее мощность подобрана исходя из доступной электрической мощности станции. Для большей надежности планируется так же доставка батарей, которые обеспечат 15 минут автономной работы двигателя.

Но самым необычным проектом был ”Прометей”. Корабль в рамках этого проекта планировалось отправить к Юпитеру со скорость 90 км/c. Ионный двигатель корабля должен бал работать от ядерного реактора, но из-за технических трудностей в 2005 году проект закрыли.

Как работают ракетные двигатели?

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

Явление отдачи

Шло время, наука не стояла на месте. На смену простейшим механическим двигателям пришли паровые, топливные, электрические. Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Полёт и результаты

Характеристики собранной ракеты:

  • Длина: 1300 миллиметров

  • Диаметр: 50 миллиметров

  • Масса корпуса (со всеми компонентами): 1000 грамм

  • Масса электроники: 180 грамм

  • Масса двигателя: 440 грамм

  • Масса полная: 1620 грамм

  • Двигатель: ДКР-30-9-280-ПЭ(С)

  • Класс: H115, максимальная тяга — 180 Н*с

  • Расчётный (максимальный) апогей: 530 метров

  • Время до апогея: 11,5 секунд

Взлёт ракеты

Полёт в целом получился успешным, ракета достигла апогея в 400 метров.

Ракета села с парашютом в 200 метрах от места старта.

Парашют раскрылся!

Любопытно, что на данных с акселерометра видны всплески, соответствующие работе системы спасения (мортирки).

Сырые данные с логгера

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector